The European Journal of Humour Research

Vol 11, No 3 (2023)

Have media texts become more humorous? A diachronic analysis of the Corpus of Historical American English

Haoran Zhu,Yueqing Deng


As a research topic, humour has drawn much attention from multiple disciplines including linguistics. Based on Engelthaler & Hills (2018) humour scale, this study developed a measure named Humour Index (HMI) to quantify the degree of humour of texts. This measure was applied to examine the diachronic changes in the degree of humour of American newspapers and magazines across a time span of 118 years (1900-2017) with the use of texts from Corpus of Historical American English (COHA). Besides, the study also discussed the contributions of different types of words to the degree of humour in the two genres. The results show significant uptrends in the degree of humour of both newspapers and magazines in the examined period. Moreover, derogatory and offensive words are found to be less frequently used than other categories of words in both genres. This study provides both theoretical and methodological implications for humour studies and claims or hypotheses of previous research, such as infotainment and linguistic positivity bias.


Alexander, R. D. (1986). Ostracism and indirect reciprocity: The reproductive significance of humor. Ethology and Sociobiology, 7(3-4), 253-270.

Alkan, B. B., Karakus, L., & Direkci, B. (2022). Generating a sentiment dictionary in R and dictionary-based sentiment analysis in Turkish texts. Digital Scholarship in the Humanities, 1-16.

Amin, M., & Burghardt, M. (2020). A survey on approaches to computational humor generation. In S. DeGaetano, A. Kazantseva, N. Reiter & S. Szpakowicz (Eds.), Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (pp. 29–41). International Committee on Computational Linguistics.

Archakis, A., & Tsakona, V. (2021). Greek migrant jokes online: A diachronic-comparative study on racist humorous representations. Internet Pragmatics, 4(1), 28-51.

Attardo, S., & Raskin, V. (1991). Script theory revis(it)ed: Joke similarity and joke representation model. Humor. International Journal of Humor Research, 4(3-4), 293-347.

Augustine, A. A., Mehl, M. R., & Larsen, R. J. (2011). A positivity bias in written and spoken English and its moderation by personality and gender. Social Psychological and Personality Science, 2(5), 508-515.

Bernhard, U., & Scharf, W. (2008). „Infotainment“ in der Presse: Eine Längsschnittuntersuchung 1980–2007 dreier regionaler Tageszeitungen [“Infotainment” in the press: A longitudinal study 1980-2007 of three regional daily newspapers]. Publizistik, 53(2), 231-250.

Biber, D. (2003). Compressed noun-phrase structures in newspaper discourse: The competing demands of popularization vs. economy. In J. Aitchison & D. M. Lewis (Eds.), New media language (pp. 169-181). Routledge.

Biber, D., & Gray, B. (2013). Being specific about historical change: The influence of sub-register. Journal of English Linguistics, 41(2), 104-134.

Binsted, K., & Ritchie, G. (1994). An implemented model of punning riddles. Proceedings of the 12th AAAI National Conference on Artificial Intelligence, 633-638.

Booth-Butterfield, M., & Wanzer, M. B. (2016). Humor enactment in learning environments. In P. Witt (Eds.), Communication and learning (pp. 211-240). De Gruyter Mouton.

Boukes, M. (2019). Infotainment. In T. P. Vos, F. Hanusch, D. Dimitrakopoulou, M. Geertsema-Sligh & A. Sehl (Eds.), The international encyclopedia of journalism studies (pp. 1-9). Wiley-Blackwell.

Brants, K., & Neijens, P. (1998). The infotainment of politics. Political Communication, 15(2), 149-164.

Breazu, P., & Machin, D. (2022). Using humor to disguise racism in television news: The case of the Roma. Humor. International Journal of Humor Research, 35(1), 73-92.

Buscaldi, D., & Rosso, P. (2007). Some experiments in humour recognition using the Italian Wikiquote collection. In F. Masulli, S. Mitra & G. Pasi (Eds.), Applications of fuzzy sets theory (pp. 464-468). Springer.

Calhoun, K. (2019). Vine racial comedy as anti-hegemonic humor: Linguistic performance and generic innovation. Journal of Linguistic Anthropology, 29(1), 27-49.

Cann, A., & Matson, C. (2014). Sense of humor and social desirability: Understanding how humor styles are perceived. Personality and Individual Differences, 66, 176-180.

Castro, S., Chiruzzo, L., & Rosá, A. (2018). Overview of the HAHA task: Humor analysis based on human annotation at IberEval 2018. In P. Rosso, J. Gonzalo, R. Martínez, S. Montalvo & J. Carrillo-de-Albornoz (Eds.), Proceedings of the 3rd Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018) co-located with 34th Conference of the Spanish Society for Natural Language Processing (SEPLN 2018) (pp. 187-194).

Conboy, M. (2010). The language of newspapers: Socio-historical perspectives. Continuum.

Davis, L. S., León, B., Bourk, M. J., & Finkler, W. (2020). Transformation of the media landscape: Infotainment versus expository narrations for communicating science in online videos. Public Understanding of Science, 29(7), 688-701.

Decker, W. H., & Rotondo, D. M. (1999). Use of humor at work: Predictors and implications. Psychological Reports, 84 (3), 961-968.

Delli Carpini, M. X., & Williams, B. A. (2001). Let us infotain you: Politics in the new media age. In W. L. Bennett & R. M. Entman (Eds.), Mediated politics: Communication in the future of democracy (pp. 160-181). Cambridge University Press.

Dodds, P. S., Clark, E. M., Desu, S., Frank, M. R., Reagan, A. J., Williams, J. R., Mitchell, L., Harris K. D., Kloumann, I. M., Bagrow, J. P., Megerdoomian, K., McMahon, M. T., Tivnan, B. F., & Danforth, C. M. (2015). Human language reveals a universal positivity bias. Proceedings of the National Academy of Sciences, 112(8), 2389-2394.

Engelthaler, T., & Hills, T. T. (2018). Humor norms for 4,997 English words. Behavior Research Methods, 50(3), 1116-1124.

Fairclough, N. (1995). Media discourse. Arnold.

Faraj, D., & Abdullah M. (2021). SarcasmDet at SemEval-2021 Task 7: Detect humor and offensive based on demographic factors using RoBERTa pre-trained model. In A. Palmer, N. Schneider, N. Schluter, G. Emerson, A. Herbelot & X. Zhu (Eds.), Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021) (pp. 527-533). Association for Computational Linguistics.

Fowler, G. L., & Smith, E. J. (1979). Readability of newspapers and magazines over time. Newspaper Research Journal, 1(1), 3-8.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367-378.

Gibbs, R. W., Bryant, G. A., & Colston, H. L. (2014). Where is the humor in verbal irony?. Humor. International Journal of Humor Research, 27(4), 575-595.

Habeeb, R., Zhang, X., Hussain, I., Hashmi, M. Z., Elashkar, E. E., Khader, J. A., Soudagar, S. S., Shoukry, A. M., Ali, Z., & Al-Deek, F. F. (2021). Statistical analysis of modified Hargreaves equation for precise estimation of reference evapotranspiration. Tellus A: Dynamic Meteorology and Oceanography, 73(1), 1-12.

Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3), 350-363.

Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1-4), 182-196.

Hay, J. (2001). The pragmatics of humor support. Humor. International Journal of Humor Research, 14(1), 55-82.

Hong, B., & Ong, E. (2009). Automatically extracting word relationships as templates for pun generation. In A. Feldman & B. Loenneker-Rodman (Eds.), Proceedings of the Workshop on Computational Approaches to Linguistic Creativity (pp. 24-27). Association for Computational Linguistics.

Hunt, A. (1993). Humor as a nursing intervention. Cancer Nursing, 16(1), 34-39.

Jebril, N., Albæk, E., & de Vreese, C. H. (2013). Infotainment, cynicism and democracy: The effects of privatization vs personalization in the news. European Journal of Communication, 28(2), 105-121.

Jiang, H., Xiao, Y., & Wang, W. (2020). Explaining a bag of words with hierarchical conceptual labels. World Wide Web, 23(3), 1693-1713.

Keltner, D., Capps, L., Kring, A. M., Young, R. C., & Heerey, E. A. (2001). Just teasing: A conceptual analysis and empirical review. Psychological Bulletin, 127(2), 229-248.

Kuipers, G. (2005). “Where was King Kong when we needed him?” Public discourse, digital disaster jokes, and the functions of laughter after 9/11. The Journal of American Culture, 28(1), 70-84.

Kulkarni, V., Al-Rfou, R., Perozzi, B., & Skiena, S. (2015). Statistically significant detection of linguistic change. Proceedings of the 24th International Conference on World Wide Web, 625-635.

Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44, 978-990.

Labutov, I., & Lipson, H. (2012). Humor as circuits in semantic networks. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short papers – Volume 2, 150-155.

Laineste, L. (2016). From joke tales to demotivators: A diachronic look at humorous discourse in folklore. Traditiones, 45(3), 7-25.

Lazarsfeld, P. F. (1942). The daily newspaper and its competitors. The Annals of the American Academy of Political and Social Science, 219(1), 32-43.

Leech, G. N., Hundt, M., Mair, C., & Smith, N. (2009). Change in contemporary English: A Grammatical study. Cambridge University Press.

Lu, K., & Wu, J. (2019). Sentiment analysis of film review texts based on sentiment dictionary and SVM. Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence, 73-77.

Mallakpour, I., & Villarini, G. (2016). A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 61(2), 245-254.

Martin, R. A. (2007). The psychology of humor: An integrative approach. Elsevier Academic Press.

Meaney, J. A., Wilson, S., Chiruzzo, L., Lopez, A., & Magdy, W. (2021). SemEval 2021 Task 7: HaHackathon, detecting and rating humor and offense. In A. Palmer, N. Schneider, N. Schluter, G. Emerson, A. Herbelot & X. Zhu, Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021) (pp. 105-119). Association for Computational Linguistics.

Meyer, N. A., Helle, A. C., Tucker, R. P., Lengel, G. J., DeShong, H. L., Wingate, L. R., & Mullins-Sweatt, S. N. (2017). Humor styles moderate borderline personality traits and suicide ideation. Psychiatry Research, 249, 337-342.

Miczo, N. (2021). The ethics of news media reporting on coronavirus humor. Humor. International Journal of Humor Research, 34(2), 305-327.

Mihalcea, R., & Pulman, S. (2007). Characterizing humour: An exploration of features in humorous texts. In A. Gelbukh (Eds.), Computational linguistics and intelligent text processing (pp. 337-347). Springer.

Mihalcea, R., & Strapparava, C. (2005). Making computers laugh: Investigations in automatic humor recognition. In R. Mooney, C. Brew, L.-F. Chien & K. Kirchhoff (Eds.), Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (pp. 531-538). Association for Computational Linguistics.

Mihalcea, R., & Strapparava, C. (2006). Learning to laugh (automatically): Computational models for humor recognition. Computational Intelligence, 22, 126-142.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani & K. Q. Weinberger (Eds.), Proceedings of the 26th International Conference on Neural Information Processing Systems – Volume 2 (pp. 3111-3119). Curran Associates, Inc.

Moran, C. C. (2002). Humor as a moderator of compassion fatigue. In C. R. Figley (Eds.), Treating compassion fatigue (pp. 139-154). Brunner-Routledge.

Ortiz-Bejar, J., Salgado, V., Moctezuma, D., Miranda-Jimenez, S., & Tellez, E. S. (2018). INGEOTEC at IberEval 2018 Task HaHa: µTC and EvoMSA to detect and score humor in texts. In P. Rosso, J. Gonzalo, R. Martínez, S. Montalvo & J. Carrillo-de-Albornoz (Eds.), Proceedings of the 3rd Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018) co-located with 34th Conference of the Spanish Society for Natural Language Processing (SEPLN 2018) (pp. 195-202).

Otto, L., Glogger, I., & Boukes, M. (2017). The softening of journalistic political communication: A comprehensive framework model of sensationalism, soft news, infotainment, and tabloidization. Communication Theory, 27(2), 136-155.

Pang, C., Fan, X., Su, W., Chen, X., Wang, S., Liu, J., Ouyang, X., Feng, S., & Sun, Y. (2021). abcbpc at SemEval-2021 Task 7: ERNIE-based multi-task model for detecting and rating humor and offense. In A. Palmer, N. Schneider, N. Schluter, G. Emerson, A. Herbelot & X. Zhu (Eds.), Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021) (pp. 286-289). Association for Computational Linguistics.

Park, S., & Kim, Y. (2016). Building thesaurus lexicon using dictionary-based approach for sentiment classification. In Y.-T. Song (Eds.), 2016 IEEE 14th International Conference on Software Engineering Research, Management and Applications (pp. 39-44). IEEE.

Patterson, T. E. (2001). Doing well and doing good: How soft news and critical journalism are shrinking the news audience and weakening democracy and what news outlets can do about it. Joan Shorenstein Center on the Press, Politics and Public Policy.

Pham, D.-H. (2022). Exploring the effect of word embeddings and bag-of-words for Vietnamese sentiment analysis. In P. Karuppusamy, F. P. García Márquez & T. N. Nguyen (Eds.), Ubiquitous intelligent systems: Proceedings of ICUIS 2021 (pp. 595-605). Springer Singapore.

Pohlert, Thorsten (2020, September 17). Trend: Non-parametric trend tests and change-point detection. CRAN.

Potash, P., Romanov, A., & Rumshisky, A. (2016). SemEval-2017 Task 6: #HashtagWars: Learning a sense of humor. In S. Bethard, M. Carpuat, M. Apidianaki, S. M. Mohammad, D. Cer & D. Jurgens (Eds.), Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017) (pp. 49-57). Association for Computational Linguistics.

Priego-Valverde, B. (2021). Failed humor in conversation: Disalignment and (dis)affiliation as a type of interactional failure. Humor. International Journal of Humor Research, 34(4), 613-636.

Radev, D., Stent, A., Tetreault, J., Pappu, A., Iliakopoulou, K., Chanfreau, A., Juan, P., Vallmitjana, J., Jaimes, A., Jha, R., & Mankoff, B. (2016). Humor in collective discourse: Unsupervised funniness detection in the New Yorker cartoon caption contest. In N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk & S. Piperidis (Eds.), Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC’16) (pp. 475-479). European Language Resources Association.

Raskin, V. (1985). Semantic mechanisms of humor. D. Reidel.

Reyes, A., Buscaldi, D., & Rosso, P. (2009). An analysis of the impact of ambiguity on automatic humour recognition. In V. Matoušek & P. Mautner (Eds.), Text, speech and dialogue: 12th International Conference, TSD 2009 (pp. 162-169). Springer Berlin, Heidelberg.

Richman, J. (1995). The lifesaving function of humor with the depressed and suicidal elderly. The Gerontologist, 35(2), 271-273.

Riesch, H. (2015). Why did the proton cross the road? Humour and science communication. Public Understanding of Science, 24(7), 768-775.

Rozin, P., Berman, L., & Royzman, E. (2010). Biases in use of positive and negative words across twenty natural languages. Cognition & Emotion, 24(3), 536-548.

Rühlemann, C., & Hilpert, M. (2017). Colloquialization in journalistic writing: The case of inserts with a focus on well. Journal of Historical Pragmatics, 18(1), 104-135.

Rutkowska, A. (2015). Properties of the Cox–Stuart test for trend in application to hydrological series: The simulation study. Communications in Statistics – Simulation and Computation, 44(3), 565-579.

Şahin, A. (2021). Humor use in school settings: The perceptions of teachers. SAGE Open, 11(2), 1-16.

Shahaf, D., Horvitz, E., & Mankoff, R. (2015). Inside jokes: Identifying humorous cartoon captions. Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1065-1074.

Sitikhu, P., Pahi, K., Thapa, P., & Shakya, S. (2019). A comparison of semantic similarity methods for maximum human interpretability. Proceedings of 2019 Artificial Intelligence for Transforming Business and Society (AITB), 1-4.

Soyusiawaty, D., & Zakaria, Y. (2018). Book data content similarity detector with cosine similarity (case study on Proceedings of 2018 12th International Conference on Telecommunication Systems Services and Applications (TSSA), 1-6.

Strick, M. (2021). Funny and meaningful: Media messages that are humorous and moving provide optimal consolation in corona times. Humor. International Journal of Humor Research, 34(2), 155-176.

Strick, M., Holland, R. W., van Baaren, R. B., & van Knippenberg, A. (2009). Finding comfort in a joke: Consolatory effects of humor through cognitive distraction. Emotion, 9(4), 574-578.

Sun, Y., Wang, S., Li, Y.-K., Feng, S., Tian, H., Wu, H., & Wang, H (2020). ERNIE 2.0: A continual pre-training framework for language understanding. Proceedings of the AAAI Conference on Artificial Intelligence, 34(5), 8968-8975.

Takovski, A. (2019). Coloring social change: Humor, politics, and social movements. Humor. International Journal of Humor Research, 33(4), 485-511.

Taylor, J. M., & Mazlack, L. J. (2004). Computationally recognizing wordplay in jokes. In K. Forbus, D. Gentner & T. Regier (Eds.), Proceedings of the Twenty-Sixth Annual Conference of the Cognitive Science Society (pp. 1315-1320). Cognitive Science Society.

Taylor, W. A. (2000). Change-point analysis: A powerful new tool for detecting changes. Taylor Enterprises.,demonstrates%20its%20capabilities%20through%20a%20number%20of%20examples

Tsai, M.-N., Wu, C.-L., Chang, Y.-L., & Chen, H.-C. (2019). Humor styles in marriage: How similar are husband and wife?. Psychological Reports, 122(6), 2331-2347.

Tsakona, V. (2009). Humor and image politics in parliamentary discourse: A Greek case study. Text & Talk – An Interdisciplinary Journal of Language, Discourse Communication Studies, 29(2), 219-237.

Tsukawaki, R., & Imura, T. (2020). Preliminary verification of instructional humor processing theory: Mediators between instructor humor and student learning. Psychological Reports, 123(6), 2538-2550.

Tsukawaki, R., & Imura, T. (2022). Students’ perception of teachers’ humor predicts their mental health. Psychological Reports, 125(1), 98-109.

Urbatsch, R. (2022). Humor in supreme court oral arguments. Humor. International Journal of Humor Research, 35(2), 169-187.

Warren, C., Barsky, A., & McGraw, A. (2021). What makes things funny? An integrative review of the antecedents of laughter and amusement. Personality and Social Psychology Review, 25(1), 41-65.

Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45, 1191-1207.

Wen, J., & Lei, L. (2022). Linguistic positivity bias in academic writing: A large-scale diachronic study in life sciences across 50 years. Applied Linguistics, 43(2), 340-364.

Westbury, C., & Hollis, G. (2018). Wriggly, squiffy, lummox, and boobs: What makes some words funny?. Journal of Experimental Psychology: General, 148(1), 97-123.

Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In R. Mooney, C. Brew, L.-F. Chien & K. Kirchhoff (Eds.), Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (pp. 347-354). Association for Computational Linguistics.

Wu, C.-L., Yen, Y.-F., & Chen, H.-C. (2021). How humor styles affect humor comprehension and appreciation: A typological approach. Current Psychology, 1-9.

Xenos, M. A., & Becker, A. B. (2009). Moments of Zen: Effects of the daily show on information seeking and political learning. Political Communication, 26(3), 317-332.

Yang, D., Lavie, A., Dyer, C., & Hovy, E. (2015). Humor recognition and humor anchor extraction. In L. Màrquez, C. Callison-Burch & J. Su (Eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 2367-2376). Association for Computational Linguistics.

Yu, Z., Tan, J., & Wan, X. (2018). A neural approach to pun generation. In I. Gurevych & Y. Miyao (Eds.), Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long papers) (pp. 1650-1660). Association for Computational Linguistics.

Yue, X. D., Wong, A. Y. M., & Hiranandani, N. A. (2014). Humor styles and loneliness: A study among Hong Kong and Hangzhou undergraduates. Psychological Reports, 115(1), 65-74.

Zekavat, M. (2021). Employing satire and humor in facing a pandemic. Humor. International Journal of Humor Research, 34(2), 283-304.

Zhang, R., & Liu, N. (2014). Recognizing humor on Twitter. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, 889-898.